S7-300定位模塊 S7-300定位模塊
:李 工()竭誠為您服務
花30秒詢價,你會知道什么叫優(yōu)勢;花60秒咨詢,你會知道什么叫服務;合作一次,你會知道什么叫質量!我將提供的質量,服務作為自已zui重要的責任。期待你的詢價!!
西門子PLC模塊,西門子觸摸屏,西門子變頻器 ,西門子軟啟動器 ,西門子直流調速器
西門子數(shù)控系統(tǒng) ,門子電源模塊 ,西門子電纜 ,西門子接頭<連接器》, 西門子網(wǎng)卡
西門子編程軟件 ,西門子工控機
因此人們又研究出矢量控制變頻調速。第二代電壓空間矢量(SVPWM)控制方式:它是以三相波形整體生成效果為前提,以逼近電機氣隙的理想圓形旋轉磁場軌跡為目的,一次生成三相調制波形,以內切多邊形逼近圓的方式進行控制的。
經(jīng)實踐使用后又有所改進,即引入頻率補償,能速度控制的誤差;通過反饋估算磁鏈幅值,低速時定子電阻的影響;將輸出電壓、電流閉環(huán),以提高動態(tài)的精度和穩(wěn)定度。但控制電路環(huán)節(jié)較多,且沒有引入轉矩的調節(jié),所以系統(tǒng)性能沒有得到*。
第三代矢量控制(VC)方式:矢量控制變頻調速的做法是將異步電動機在三相坐標系下的定子電流Ia、Ib、Ic、通過三相-二相變換,等效成兩相靜止坐標系下的交流電流Ia1Ib1,再通過按轉子磁場定向旋轉變換,等效成同步旋轉坐標系下的直流電流Im1、It1(Im1相當于直流電動機的勵磁電流;It1相當于與轉。
其實質是將交流電動機等效為直流電動機,分別對速度,磁場兩個分量進行控制。通過控制轉子磁鏈,然后分解定子電流而獲得轉矩和磁場兩個分量,經(jīng)坐標變換,實現(xiàn)正交或解耦控制。矢量控制方法的提出具有劃時代的意義。然而在實際應用中,由于轉子磁鏈難以準確觀測,系統(tǒng)特性受電動機參數(shù)的影響較大,且在等效直流電動機控制過程中所用矢量旋轉變換較復雜,使得實際的控制效果難以達到理想分析的結果。
直接轉矩控制(DTC)方式:1985年,德國魯爾大學的DePenbrock教授提出了直接轉矩控制變頻技術。該技術在很大程度上解決了上述矢量控制的不足,并以新穎的控制思想、簡潔明了的系統(tǒng)結構、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。
該技術已成功地應用在電力機車牽引的大功率交流傳動上。直接轉矩控制直接在定子坐標系下分析交流電動機的數(shù)學模型,控制電動機的磁鏈和轉矩。它不需要將交流電動機等效為直流電動機,因而省去了矢量旋轉變換中的許多復雜計算;它不需要模仿直流電動機的控制,也不需要為解耦而簡化交流電動機的數(shù)學模型。
矩陣式交—交控制方式:VVVF變頻、矢量控制變頻、直接轉矩控制變頻都是交—直—交變頻中的一種。其共同缺點是輸入功率因數(shù)低,諧波電流大,直流電路需要大的儲能電容,再生能量又不能反饋回電網(wǎng),即不能進行四象限運行。
具體方法是:1、控制定子磁鏈引入定子磁鏈觀測器,實現(xiàn)無速度傳感器方式;2、自動識別(ID)依靠精確的電機數(shù)學模型,對電機參數(shù)自動識別;3、算出實際值對應定子阻抗、互感、磁飽和因素、慣量等算出實際的轉矩、定子磁鏈、轉子速度進行實時控制;4、實現(xiàn)Band—Band控制按磁鏈和轉矩的Band—Band控制。
矩陣式交—交變頻具有快速的轉矩響應(<2ms),很高的速度精度(±2%,無PG反饋),高轉矩精度(<+3%);同時還具有較高的起動轉矩及高轉矩精度,尤其在低速時(包括0速度時),可輸出150%~200%轉矩。
為此,矩陣式交—交變頻應運而生。由于矩陣式交—交變頻省去了中間直流環(huán)節(jié),從而省去了體積大、價格貴的電解電容。它能實現(xiàn)功率因數(shù)為l,輸入電流為正弦且能四象限運行,系統(tǒng)的功率密度大。該技術雖尚未成熟,但仍吸引著眾多的學者深入研究。
其實質不是間接的控制電流、磁鏈等量,而是把轉矩直接作為被控制量來實現(xiàn)的。VVC的控制原理:VVC的控制原理是將矢量調制的原理應用于固定電壓源PWM逆變器。這一控制建立在一個改善了的電機模型上,該電機模型較好的對負載和轉差進行了補償。
因為有功和無功電流成分對于控制系統(tǒng)來說都是很重要的,控制電壓矢量的角度可顯著的改善0-12HZ范圍內的動態(tài)性能,而在標準的PWMU/F驅動中0-10HZ范圍一般都存在著問題。利用SFAVM或60°AVM原理來計算逆變器的開關模式,可使氣隙轉矩的脈動很?。ㄅc使用同步PWM的變頻器相比)。