功能大、操作、發(fā)表文獻(xiàn)最多的葉綠素?zé)晒獬上裣到y(tǒng)
突變株快速篩選的強(qiáng)大工具
? 標(biāo)準(zhǔn)藍(lán)光版,450 nm,測葉片和真核藻類 ? 紅光版,620 nm,測藍(lán)藻和真核藻類 |
主要功能
? 成像功能:對Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等參數(shù)進(jìn)行成像分析。測定調(diào)節(jié)性能量耗散Y(NPQ),反映植物光保護(hù)能力,測定非調(diào)節(jié)性能量耗散Y(NO),反映植物光損傷程度。
? 程序測量功能:可程序測量熒光誘導(dǎo)曲線、快速光曲線和暗弛豫,也可手動測量;在測量過程中能自動分析所有熒光參數(shù)的變化趨勢
? AOI功能:可在測量前或測量后任意選擇感興趣的區(qū)域(AOI),程序?qū)⒆詣訉x擇的AOI的數(shù)據(jù)進(jìn)行變化趨勢分析,并在報告文件中顯示相關(guān)AOI的數(shù)據(jù)。所有報告文件中顯示的數(shù)據(jù)都可導(dǎo)出到EXCEL文件中。
? 成像異質(zhì)性分析功能:對任意參數(shù)任意時間的成像,可在圖像上任意選取兩點,軟件自動對兩點間的數(shù)據(jù)進(jìn)行橫向異質(zhì)性分析,并可導(dǎo)出到EXCEL文件中。
? 成像數(shù)據(jù)范圍分析功能:對任意參數(shù)任意時間的成像,可分析任意兩個熒光數(shù)值之間有多少個像素點,多少面積(cm2)。
? 突變株篩選功能:可跟據(jù)成像結(jié)果快速篩選光合、產(chǎn)氫/油、抗逆(抗鹽、抗旱、抗病等)等突變株。
? 微藻毒理研究功能:可同時測量96個微藻樣品(對照和處理組)的光合活性,軟件自動給出處理組樣品相對于對照組的光合抑制百分比。
? 吸光系數(shù)測量功能:快速測量葉片的吸光系數(shù)。吸光系數(shù)測量光源: 16個紅光(650 nm)和16個近紅外(780 nm)LED,用于測量植物葉片或藻類樣品PAR吸光系數(shù)。
? 監(jiān)測功能:可實時監(jiān)控箱內(nèi)環(huán)境狀態(tài)、機(jī)器狀態(tài)監(jiān)控區(qū)顯示目前程序及環(huán)境狀態(tài)
? 環(huán)境仿真功能:可程序化多組程序功能 (最多6組),可個別設(shè)定執(zhí)行天數(shù),可設(shè)備單日環(huán)境參數(shù)(最小間隔為分),程序化環(huán)境參數(shù)
? 項目管理功能:預(yù)約存多次測量的植物影像及參數(shù),延時(縮時)攝影功能
? 數(shù)據(jù)分析功能:可導(dǎo)出照片文件,可導(dǎo)出葉綠素?zé)晒鈪?shù)Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等
系統(tǒng)設(shè)計
? 可單獨作為葉綠素?zé)晒鈨x使用,方便帶到野外田間測量和成像;也可配置箱體式結(jié)構(gòu),容量300L,能同時滿足植物培養(yǎng)和葉綠素?zé)晒獬上竦墓δ?。箱體內(nèi)設(shè)有栽培區(qū),可分2層、3層、4層等,調(diào)節(jié)高度進(jìn)行培養(yǎng)和測量。箱體內(nèi)有特殊消光圖層,避免反光造成的測量干擾。
? 系統(tǒng)配置觸摸式高清顯示屏(24寸),方便操作,支持1670萬色彩和FHD高清畫質(zhì)。
? 系統(tǒng)處理器:I7處理器,16G緩存,512固態(tài)硬盤SSD,滿足快速數(shù)據(jù)處理和存儲要求。
? 供電:室內(nèi)使用220V,50Hz交流電,熒光儀單獨使用時,內(nèi)置可充電鋰電池供電,滿足4小時的野外測量
箱體環(huán)境控制(光照、溫度等)
? 溫度環(huán)控條件:15-40°C ±5°C(關(guān)燈)
? 光照系統(tǒng):采用四合一LED光盤,白光5000k ±500k、紅光660nm±10nm、藍(lán)450nm±10nm、紅外光730nm±10nm,光盤面積29×40cm,四種光源可獨立自主控制,光質(zhì)強(qiáng)度PPFD ≧700µmols-1m-2@15cm,光照時間控制可程序化設(shè)定,最小設(shè)定時間1min,可仿真日出至日落光照變化。
? 控制系統(tǒng):PID微電腦控制,可設(shè)定上晝夜循環(huán)程序
? 可選配二氧化碳和濕度控制單元
成像技術(shù)參數(shù)
Maxi探頭
? 熒光測量光源: 44個藍(lán)色LED,450 nm,測量光強(qiáng)度0.5 μmol m-2 s-1PAR,光化光強(qiáng)度1900 μmol m-2 s-1PAR,飽和脈沖強(qiáng)度4000 μmol m-2 s-1PAR
? 吸光系數(shù)測量光源:16個紅光(660 nm)和16個近紅外(780 nm)LED,用于測量樣品PAR吸光系數(shù)。
? 成像面積:工作距離18.5cm,成像面積 10×13 cm;工作距離22.5cm,成像面積11×15cm。
? 光強(qiáng)異質(zhì)性:測量區(qū)域光強(qiáng)異質(zhì)性小于±7%。
? 測量參數(shù):Ft、Fo、Fm、Fv/Fm、F、Fm’、Y(II)、Y(NO)、Y(NPQ)、NPQ、qN、qP、qL、ETR、Abs.、NIR、Red等。
應(yīng)用領(lǐng)域
? 光合作用研究:可以在相同的條件下同時對大量樣品進(jìn)行成像
? 植物病理學(xué):病斑部位(包括肉眼不可見時)成像以及病斑擴(kuò)散的時空動力學(xué)
? 植物脅迫生 理學(xué):肉眼不可見脅迫損傷的早期檢測
? 遺傳育種:出苗后大規(guī)??焖俸Y選高光合/抗旱/抗熱/抗凍/抗病等植株
? 突變株篩選:快速篩選模式植物的光合突變株、抗逆突變株、產(chǎn)氫微藻突變株等
? 微藻毒理學(xué):不同毒物濃度多個重復(fù)的樣品一次測完,軟件自動計算抑制比率
? 分子生物學(xué):宏觀水平上檢測樣品的綠色熒光蛋白(GFP)熒光
? 其它多種擴(kuò)展研究
成像參數(shù)
Fo, Fm, F, Ft, Fm', Fv/Fm, Y(II), qL, qP, qN, NPQ, Y(NPQ), Y(NO), ETR, Abs, NIR和Red等
突變株的快速篩選
MAXI-IMAGING-PAM特別適合對幼苗、愈傷組織、微藻等進(jìn)行突變株的快速篩選,適合于與光合突變株、抗逆(抗旱、抗鹽、抗病等)突變株、產(chǎn)油/氫突變株等的快速篩選。
國外利用MAXI-IMAGING-PAM篩選突變株的典型客戶如拜耳、BASF、孟山都、先正達(dá)等大型跨國農(nóng)業(yè),以及各大農(nóng)業(yè)育種、植物分子生物學(xué)等科研單位,例如澳大利亞植物功能基因組中心(阿德雷德大學(xué))、德國尤里希表型植物表型研究中心(Julich Plant Phenotyping Centre)等等。
國內(nèi)約一半的MAXI-IMAGING-PAM客戶在進(jìn)行突變株快速篩選工作,主要分布于、中國農(nóng)科院和各大高校。
突變株篩選實例一:國內(nèi)某客戶篩選的擬南芥突變株
突變株篩選實例二:產(chǎn)油突變株的篩選。Ajjawi et al, 2010, Plant Physiol., 152: 529-540.
突變株篩選實例三:光合突變株的篩選。Armbruster et al., 2010, Plant Cell, 22: 3439-3460.
調(diào)制葉綠素?zé)晒獬上駥嵗?/strong>
葉片成像異質(zhì)性 1)葡萄葉片 2)荷花葉片 |
水果的成像 1)草莓的成像 2)獼猴桃的成像 |
突變株篩選 |
植物病理研究 |
熒光成像與CO2氣體交換的同步測量
(GFS-3000/IM-MAXI):MAXI-探頭與GFS-3000聯(lián)用,在10 cm x 13 cm的面積上同步測量氣體交換與熒光成像。
產(chǎn)地:德國WALZ
代表文獻(xiàn)
數(shù)據(jù)來源:光合作用文獻(xiàn)Endnote數(shù)據(jù)庫
原始數(shù)據(jù)來源:Google Scholar
1. Corral, M. G., et al. (2018). "A herbicide structure‐activity analysis of the antimalarial lead compound MMV007978 against Arabidopsis thaliana." Pest management science.
2. Ohnishi, A., et al. (2018). "Improved photosynthesis in Arabidopsis roots by activation of GATA transcription factors." Photosynthetica: 1-12.
3. Paolacci, S., et al. (2018). "The invasive duckweed Lemna minuta Kunth displays a different light utilisation strategy than native Lemna minor Linnaeus." Aquatic Botany.
4. Phinney, N., et al. (2018). "Rapid resurrection of chlorolichens in humid air: specific thallus mass drives rehydration and reactivation kinetics." Environmental and Experimental Botany.
5. Antonoglou, O., et al. (2018). "Nanobrass CuZn nanoparticles as foliar spray non phytotoxic fungicides." ACS applied materials & interfaces.
6. Borlongan, I. A., et al. (2018). "Photosynthetic activity of two life history stages of Costaria costata (Laminariales, Phaeophyceae) in response to PAR and temperature gradient." Phycologia 57(2): 159-168.
7. Chen, Y.-E., et al. (2018). "Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence." Chemosphere 194: 220-228.
8. Gawroński, P., et al. (2018). "Plastid ribosome pausing is induced by multiple features and is linked to protein complex assembly." Plant Physiology: pp. 01564.02017.
9. Keilhofer, N., et al. (2018). "Streptomyces AcH 505 triggers production of a salicylic acid analogue in the fungal pathogen Heterobasidion abietinum that enhances infection of Norway spruce seedlings." Antonie van Leeuwenhoek: 1-14.
10. Lan, X.-Y., et al. (2018). "Resistance mechanisms and their difference between the root and leaf of Microsorum pteropus – A novel potential aquatic cadmium hyperaccumulator." Science of The Total Environment 616-617(Supplement C): 480-490.
11. Li, S., et al. (2018). "Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage and emission of LOX products across a diverse set of species." Plant, Cell & Environment.
12. Li, X., et al. (2018). "Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves." Scientia Horticulturae 230: 155-160.
13. Li, X., et al. (2018). "Melatonin alleviates low PS I‐limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b‐deficient mutant wheat." Journal of pineal research 64(1).
14. Li, X., et al. (2018). "Exogenous Melatonin Alleviates Cold Stress by Promoting Antioxidant Defense and Redox Homeostasis in Camellia sinensis L." Molecules 23(1): 165.
15. Pan, J., et al. (2018). "Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants." Journal of Integrative Plant Biology.
16. Pieczywek, P., et al. (2018). "Early detection of fungal infection of stored apple fruit with optical sensors–Comparison of biospeckle, hyperspectral imaging and chlorophyll fluorescence." Food Control 85: 327-338.
17. Racheva, R., et al. (2018). "In situ continuous countercurrent cloud point extraction of microalgae cultures." Separation and Purification Technology 190: 268-277.
18. Schroeder, R. Y., et al. (2018). "The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress." New Phytologist 217(1): 233-244.
19. Tajti, J., et al. (2018). "Comparative study on the effects of putrescine and spermidine pre-treatment on cadmium stress in wheat." Ecotoxicology and Environmental Safety 148: 546-554.
20. Wang, Q., et al. (2018). "Molecular cloning and characterization of the glutathione reductase gene from Stipa purpurea." Biochemical and biophysical research communications 495(2): 1851-1857.
21. Xia, Y., et al. (2018). "Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus." Chemosphere 195: 437-447.
22. Ahammed, G. J., et al. (2017). "Tomato photorespiratory glycolate oxidase‐derived H2O2 production contributes to basal defense against Pseudomonas syringae." Plant, Cell & Environment.
23. Allewaert, C. C., et al. (2017). "Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species." Algal Research 21: 191-202.
24. álvarez-Iglesias, L., et al. (2017). "A simple, fast and accurate screening method to estimate maize (Zea mays L) tolerance to drought at early stages." Maydica 62(2017): M34.
25. Araniti, F., et al. (2017). "Allelopatic Potential of Dittrichia viscosa (L.) W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach." PLoS ONE 12(1): e0170161.
26. Aucique-Pérez, C. E., et al. (2017). "Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae." Plant Physiology and Biochemistry.
27. Bellworthy, J. and M. Fine (2017). "Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light." Coral Reefs: 1-12.
28. Bender-Champ, D., et al. (2017). "Effects of elevated nutrients and CO 2 emission scenarios on three coral reef macroalgae." Harmful Algae 65: 40-51.
29. Bresson, J., et al. (2017). "A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations." Journal of Experimental Botany.
30. Brugger, A., et al. (2017). "Impact of compatible and incompatible barley—Blumeria graminis f.sp. hordei interactions on chlorophyll fluorescence parameters." Journal of Plant Diseases and Protection.
31. Cai, S. Y., et al. (2017). "HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants." Journal of pineal research.
32. Cantabella, D., et al. (2017). "Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content." Plant Physiology and Biochemistry.
33. Chakravarti, L. J., et al. (2017). "Rapid thermal adaptation in photosymbionts of reef‐building corals." Global change biology.
34. Chen, Y.-E., et al. (2017). "Comparison of Photosynthetic Characteristics and Antioxidant Systems in Different Wheat Strains." Journal of Plant Growth Regulation: 1-13.
35. Cheng, T., et al. (2017). "Hydrogen sulfide enhances poplar tolerance to high-temperature stress by increasing S-nitrosoglutathione reductase (GSNOR) activity and reducing reactive oxygen/nitrogen damage." Plant Growth Regulation.
36. Coffey, A., et al. (2017). "The UVB photoreceptor UVR8 mediates accumulation of UV‐absorbing pigments, but not changes in plant morphology, under outdoor conditions." Plant, Cell & Environment.
37. Corral, M. G., et al. (2017). "Exploiting the evolutionary relationship between malarial parasites and plants to develop new herbicides." Angewandte Chemie.
38. Csepregi, K., et al. (2017). "Developmental age and UV-B exposure co-determine antioxidant capacity and flavonol accumulation in Arabidopsis leaves." Environmental and Experimental Botany.
39. Cunning, R., et al. (2017). "Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals." Coral Reefs.
40. de Lima, D. A., et al. (2017). "Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action." Ecotoxicology and Environmental Safety 141: 242-250.
41. Di Baccio, D., et al. (2017). "Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants." Science of The Total Environment.
42. Domínguez-Martín, M. A., et al. (2017). "Quantitative Proteomics Shows Extensive Remodeling Induced by Nitrogen Limitation in Prochlorococcus marinus SS120." mSystems 2(3): e00008-00017.
43. Du, G., et al. (2017). "Behavioral and physiological photoresponses to light intensity by intertidal microphytobenthos." Chinese Journal of Oceanology and Limnology: 1-12.
44. Fang, J. K., et al. (2017). "Symbiotic plasticity of Symbiodinium in a common excavating sponge." Marine Biology 164(5): 104.
45. Fittschen, U., et al. (2017). "A new micro X‐ray fluorescence spectrometer for in vivo elemental analysis in plants." X‐Ray Spectrometry.
46. Frankenbach, S. and J. Ser?dio (2017). "One pulse, one light curve: Fast characterization of the light response of microphytobenthos biofilms using chlorophyll fluorescence." Limnology and Oceanography: Methods.
47. Gardner, S. G., et al. (2017). "A multi-trait systems approach reveals a response cascade to bleaching in corals." BMC biology 15(1): 117.
48. Gardner, S. G., et al. (2017). "Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress." Journal of Experimental Biology: jeb. 153049.
49. Gauslaa, Y., et al. (2017). "Functional traits prolonging photosynthetically active periods in epiphytic cephalolichens during desiccation." Environmental and Experimental Botany.
50. Hackett, J. B., et al. (2017). "An Organelle RNA Recognition Motif Protein Is Required for Photosystem II Subunit <em>psbF</em> Transcript Editing." Plant Physiology 173(4): 2278.
51. Harre, N. T., et al. (2017). "Distribution of Herbicide-Resistant Giant Ragweed (Ambrosia trifida) in Indiana and Characterization of Distinct Glyphosate-Resistant Biotypes." Weed Science: 1-11.
52. He, J., et al. (2017). "Photosynthetic acclimation of Grammatophyllum speciosum to growth irradiance under natural conditions in Singapore." Botanical Studies 58(1): 58.
53. Hsieh, W. Y., et al. (2017). "The Arabidopsis thiamin deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway." The Plant Journal.
54. Hu, L., et al. (2017). "Appropriate NH4+: NO3? ratio improves low light tolerance of mini Chinese cabbage seedlings." BMC Plant Biology 17(1): 22.
55. Hu, W., et al. (2017). "Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment." Mycorrhiza: 1-13.
56. Humanes, A., et al. (2017). "Effects of suspended sediments and nutrient enrichment on juvenile corals." Marine pollution bulletin.
57. Jiao, Y., et al. (2017). "Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis." Ecological Indicators 78: 131-141.