詳細(xì)介紹
全自動(dòng)腦立體定位儀是組合了經(jīng)典的U型框設(shè)計(jì)定制馬達(dá)和創(chuàng)新性軟件是一款新型的腦定位儀產(chǎn)品。通過StereoDrive軟件此型號(hào)全自動(dòng)腦立體定位儀能夠通過馬達(dá)和電腦控制三個(gè)軸方向上的位移。另外軟件中整合了Paxinos 和Watson的《大鼠腦定位圖譜》、《小鼠腦定位圖譜》能夠更方便和更直觀的進(jìn)行腦立體定位。
全自動(dòng)腦立體定位儀的主要特點(diǎn)
· 腦立體定位儀由軟件驅(qū)動(dòng)計(jì)算機(jī)控制
· 兼容標(biāo)準(zhǔn)腦立體定位儀
· 立體位置3軸定位
· 高精度移動(dòng)精度0.001mm
操作方便、精準(zhǔn)
· 腦立體定位儀對(duì)于小動(dòng)物的腦部手術(shù)來說是一種可靠的多功能的設(shè)備。
· 通過儀器的精確定位可以確保電極、微管以及其它設(shè)備在實(shí)驗(yàn)過程中的精確定位。
模塊(可選)
· 由微型電動(dòng)機(jī)來準(zhǔn)確地控制推進(jìn)和停止hamilton注射器注射器可以方便地固定在腦立體定位儀上。
· 菜單操作簡單可以通過平臺(tái)選擇注射器的型號(hào)設(shè)定注射容量、注射速度。
· 流速范圍0.01 µl/min到200 µl/min
模塊(可選)
· 集成式電動(dòng)機(jī)和低震動(dòng)的柔韌性軸噪音低性能可靠;
· 電動(dòng)機(jī)集成化固定在支撐架上;
· 可選用手動(dòng)或腳踏開關(guān)控制轉(zhuǎn)速每分鐘10000轉(zhuǎn)。
前囟監(jiān)測觀察器(可選)
· 實(shí)時(shí)精確觀察定位情況;
· 減少人為失誤確保手術(shù)精度;
motorized rat stereotaxic instruments
The Motorized Rat Stereotaxics combines the classic stereotaxic design with customized motors and state-of-the-art software. Integrated with popular stereotaxic atlases the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes. The intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications.
The Motorized Lab Standard Stereotaxic combines the classic design of our time-proven ‘U’-Frame with customized motors and state-of-the-art software.
Designed to adapt conventional stereotaxic systems, the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes. Integrated with Paxinos and Watson’s Rat Brain in Stereotaxic Coordinates, for either rat or mouse, the intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications.
Features:
Digital Atlas integration
Frame representation
Calibration of frame coordinates
Setting of logical coordinate system (Bregma)
Coordinates and Atlas visualization of the probe
Advanced 3D visualization options
Spatial Atlas representation
Intuitive probe control
Intuitive navigation
Motorized UpgradeYour choice of two service options:
Option 1New Motorized Manipulator Arm and Axis StereoDrive Software
Keep your existing arm. We'll ship you a new one.
Option 2Conversion to Motorized Manipulator Arm and Axis StereoDrive Software
Send us your existing arm. We will convert it to motorized for you.
Motorized Lab Standard Stereotaxic Software SamplerThe StereoDrive software display is divided into the navigation section on the left and the 3D atlas view on the right side of the window.
1. Atlas View
2. Actual position of the probe (logical or physical)
3. Axial view thumbnail — indicating the movement in anterior-posterior (X-axis) or medio-lateral (Y Axis) direction
4. Coronal view thumbnail — indicating the movement in medio-lateral (Y-axis) or inferior-superior (Z Axis) direction
5. Anterior-posterior (X) drive control region
6. Medio-lateral (Y) drive control region
7. Inferior-superior (Z) drive control region
8. Actual coordinates of the probes tip
9. Editable target coordinates of the probes tip
10. Stop button
11. GoTo button
12. Set Lambda button — setup of the logical coordinate system
13. Set Bregma button — setup of the logical coordinate system
14. Tools — access to the microdrive calibration (frame coordinate system)
Motorized StereoDrive Software
Included with Motorized Lab Standard™ Stereotaxic
Axis StereoDrive Software integrates seamlessly with the precision controlled motors. Motor movement can be executed by using the keyboard arrow keys or clicking on the screen with the mouse.
The software coordinates motor movement of all 3 axes (anterior-posterior, medial-lateral, and dorsal-ventral) probe placement in relation to 3-dimensional visual representation of a rat (Paxinos & Watson, 6th Edition) or mouse (Watson, 3rd edition) Brain Atlas.
Features
Easy calibration
Software-driven control of stereotaxic movement
Virtual visualization of probe location
One micron resolution
Download coordinates to computer for recall and/or archiving
Angle adjustments
Variable speed on 2-axis (dorsal-ventral)
The Motorized Lab Standard Stereotaxic combines the classic design of our time-proven ”U”-Frame with customized motors and state-of-the-art software.Designed to adapt conventional stereotaxic systems, the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes.
Integrated with Paxinos and Watson’s Rat Brain in Stereotaxic Coordinates, the intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications
Image manipulations include:
Spatial Rotation
Fixed Rotation
Zooming
Panning
ITEM | DESCRIPTION |
小鼠型 | 配小鼠適配器18°耳桿 |
大鼠型 | 配大鼠適配器45°或18°耳桿 |
全自動(dòng)腦立體定位儀部分參考文獻(xiàn)
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in RatsImplications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenolA PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
3007536033