FP-leaf葉夾式植物光譜與葉綠素?zé)晒鉁y量包
FP-leaf葉夾式植物光譜與葉綠素?zé)晒鉁y量包用于測量葉片水平的植物葉綠素?zé)晒狻⑷~片反射光譜及光譜指數(shù)等,包括手持式葉綠素?zé)晒鉁y量儀和植物反射光譜測量儀。適于野外大量樣品的快速檢測,廣泛應(yīng)用于植物脅迫響應(yīng)、除草劑檢測,生態(tài)毒理生物檢測、植物反射光譜測量、色素組成變化、氮素含量變化、產(chǎn)量估測、生態(tài)學(xué)、分子生物學(xué)等。
測得的數(shù)據(jù)以圖形或數(shù)據(jù)表的形式實(shí)時(shí)顯示在儀器的顯示屏上。這些數(shù)據(jù)都可以儲存在儀器的內(nèi)存里并傳輸?shù)诫娔X里。測量儀由可充電鋰電池供電,不需要使用電腦即可獨(dú)立進(jìn)行測量。測量儀配備全彩色觸屏顯示器、內(nèi)置光源、內(nèi)置GPS和用于固定樣品的無損葉夾。
應(yīng)用領(lǐng)域
適用于光合作用研究和教學(xué),植物及分子生物學(xué)研究,農(nóng)業(yè)、林業(yè),生物技術(shù)領(lǐng)域等。研究內(nèi)容涉及光合活性、脅迫響應(yīng)、農(nóng)藥藥效測試、突變篩選、色素含量評估等。
·植物光合特性研究
·光合突變體篩選與表型研究
·生物和非生物脅迫的檢測
·植物抗脅迫能力或者易感性研究
·農(nóng)業(yè)和林業(yè)育種、病害檢測、長勢與產(chǎn)量評估
·除草劑檢測
·色素組成變化
·氮素含量變化
·產(chǎn)量估測
·教學(xué)
功能特點(diǎn)
§結(jié)構(gòu)緊湊、便攜性強(qiáng),光源、檢測器、控制單元集成于僅手機(jī)大小的儀器內(nèi)
§功能強(qiáng)大,具備了大型葉綠素?zé)晒鈨x和反射光譜儀的所有功能,可以測量所有葉綠素?zé)晒鈪?shù)和自動計(jì)算常用的植物反射光譜指數(shù),同時(shí)提供熒光動力學(xué)曲線圖和高精度反射光譜圖
§葉綠素?zé)晒鈾z測內(nèi)置了所有通用實(shí)驗(yàn)程序,包括3套熒光淬滅分析程序、3套光響應(yīng)曲線程序、OJIP快速熒光動力學(xué)曲線等
§葉綠素?zé)晒鈾z測具備高時(shí)間分辨率,可達(dá)10萬次每秒,自動繪出OJIP曲線并給出26個(gè)OJIP–test參數(shù)
§專業(yè)軟件功能強(qiáng)大:葉綠素?zé)晒夥治鲕浖上螺d、展示葉綠素?zé)晒鈪?shù)圖表,也可以通過軟件直接控制儀器進(jìn)行測量;植物光譜分析軟件可以自動計(jì)算內(nèi)置植被指數(shù)、計(jì)算用戶自定義植被指數(shù)、實(shí)時(shí)顯示數(shù)據(jù)圖和數(shù)據(jù)表
§葉綠素?zé)晒鈾z測具備無人值守自動監(jiān)測功能
§具備GPS模塊,輸出帶時(shí)間戳和地理位置的葉綠素?zé)晒鈪?shù)圖表和反射光譜數(shù)據(jù)
技術(shù)參數(shù)
1. 測量參數(shù)及程序
1.1葉綠素?zé)晒鉁y量包括F0、Ft、Fm、Fm’、QY、QY_Ln、QY_Dn、NPQ、Qp、Rfd、PAR(限PAR型號)、Area、Mo、Sm、PI、ABS/RC等50多個(gè)葉綠素?zé)晒鈪?shù)
1.2葉綠素?zé)晒釵JIP–test包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、Mo、Area、Fix Area、Sm、Ss、N、Phi_Po、Psi_o、Phi_Eo、Phi–Do、Phi_Pav、PI_Abs、ABS/RC、TRo/RC、ETo/RC、DIo/RC等
1.3葉綠素?zé)晒鉁y量程序:Ft、QY、OJIP、NPQ1、NPQ2、NPQ3、LC1、LC2、LC3、PAR(限PAR型號)、Multi無人值守自動監(jiān)測
1.4植被反射指數(shù):NDVI、SR、綠度指數(shù)、MCARI、TCARI、TVI、ZMI、SRPI、NPQI、PRI、NPCI、Carter指數(shù)、SIPI、GM1、SR、MCARI1、OSAVI、MCARI、Ctr2、GM2(視具體型號而定)
2. 手持式葉綠素?zé)晒鉁y量單元:
2.1葉夾類型:固定葉夾式、分離葉夾式、探頭式等
2.2PAR傳感器:80o入射角余弦校正,讀數(shù)單位µmol(photons)/m2.s,可顯示讀數(shù),檢測范圍400-700 nm
2.3 測量光:每測量脈沖0.09µmol(photons)/m2.s,10-*可調(diào)
2.4光化學(xué)光:10-1000µmol(photons)/m2.s可調(diào)
2.5飽和光:3000µmol(photons)/m2.s,11-*可調(diào)
2.6光源:標(biāo)準(zhǔn)配置藍(lán)光455nm,可根據(jù)需求配備不同波長的LED光源
2.7尺寸大?。撼銛y,手機(jī)大小,134×65×33mm(不包括探頭),重量僅188g
2.8數(shù)據(jù)存儲:容量16Mb,可存儲149000數(shù)據(jù)點(diǎn)
2.9顯示與操作:圖形化顯示,雙鍵操作,待機(jī)5分鐘自動關(guān)閉
2.10供電:2000mA可充電鋰電池,USB充電,可連續(xù)工作48小時(shí),低電報(bào)警
2.11工作條件:0–55℃,0–95%相對濕度(無凝結(jié)水)
2.12存貯條件:-10–60℃,0–95%相對濕度(無凝結(jié)水)
2.13通訊方式:藍(lán)牙+USB雙通訊模式,藍(lán)牙在20m距離*傳輸速度3Mbps
2.14GPS模塊:內(nèi)置,精度1.5m
2.15軟件:FluorPen1.1軟件,用于數(shù)據(jù)下載、分析和圖表顯示,輸出Excel數(shù)據(jù)文件及熒光動力學(xué)曲線圖
3. 手持式植物反射光譜單元
3.1光譜檢測范圍:
PolyPen RP 410 UVIS光譜響應(yīng)范圍為380-790nm
PolyPen RP 410 NIR光譜響應(yīng)范圍為640-1050nm
3.2光源:氙氣白熾燈380-1050nm
3.3光譜響應(yīng)半寬度:8nm
3.4光譜雜散光:-30dB
3.5光學(xué)孔徑:7mm
3.6掃描速度:約100ms
3.7觸控屏:240×320像素,65535色
3.8內(nèi)存:16MB(可存儲4000組以上測量數(shù)據(jù))
3.9系統(tǒng)數(shù)據(jù):16位數(shù)模轉(zhuǎn)換
3.10動態(tài)范圍:高增益 1:4300;低增益 1:13000
3.11內(nèi)置GPS模塊:*精度<1.5m
3.12通訊方式:USB
3.13軟件功能:自動計(jì)算內(nèi)置植被指數(shù)、計(jì)算用戶自定義植被指數(shù)、實(shí)時(shí)顯示數(shù)據(jù)圖和數(shù)據(jù)表、數(shù)據(jù)導(dǎo)出為Excel、GPS地圖、固件升級,Windows XP及以上系統(tǒng)適用
3.14光譜反射標(biāo)準(zhǔn)配件(選配):提供的漫反射值(99%)。光譜平面涵蓋UV-VIS-NIR光譜,保證+/-1%的光學(xué)平面。用于光源和檢測器的校準(zhǔn)。
3.15尺寸:15×7.5×4cm
3.16重量:300g
3.17外殼:防水濺外殼
3.18電池:2600mAh可充電鋰電池,通過USB接口連接電腦充電
3.19續(xù)航時(shí)間:可連續(xù)測量48小時(shí)
3.20工作條件:溫度0~55℃,相對濕度0-95%(無冷凝水)
3.21存放條件:溫度-10~60℃,相對濕度0-95%(無冷凝水)
應(yīng)用案例 1:
歐盟委員會聯(lián)合研究中心通過無人機(jī)遙測技術(shù)研究葉緣焦枯病菌在橄欖樹中的感染。同時(shí)通過FluorPen葉綠素?zé)晒鈨x和RP400光譜儀直接檢測葉片的葉綠素?zé)晒夂头瓷涔庾V植被指數(shù),用于對照修正無人機(jī)遙測數(shù)據(jù)。研究結(jié)果發(fā)表在《Nature Plants》(Zarco-Tejada,2018)。
應(yīng)用案例 2:
水稻灌漿期的夜間高溫會顯著影響水稻的產(chǎn)量。捷克*變化研究中心與水稻研究所合作研究夜間高溫對成熟水稻穗光學(xué)特性的變化追蹤。研究者使用FluorPen手持式葉綠素?zé)晒鈨x測量了光合系統(tǒng)有效光化學(xué)效率ΦII(也稱為有效量子產(chǎn)額QY或ΦPSII)和穩(wěn)態(tài)熒光Fs。同時(shí)使用PolyPen手持式植物反射光譜測量儀的前期型號WinePen測量了反射光譜曲線,并計(jì)算了PRI、mSR705、mND705、R470/R570、R520/R675等9項(xiàng)植被指數(shù)。這些植被指數(shù)與水稻葉片/穗的光合能力、穩(wěn)態(tài)熒光、葉綠素濃度等緊密相關(guān)(Gil-Ortiz R et al. 2020)。
圖1. 不同品種水稻的有效量子產(chǎn)額QY時(shí)間趨勢
圖2. 反射植被指數(shù)與葉綠素?zé)晒鈪?shù)的線性回歸系數(shù)
參考文獻(xiàn)
1. Singh, S., Mohan Prasad, S. & Pratap Singh, V. Additional calcium and sulfur manages hexavalent chromium toxicity in Solanum lycopersicum L. and Solanum melongena L. seedlings by involving nitric oxide. Journal of Hazardous Materials 398, 122607 (2020).
2. Ariyarathna, R. a. I. S., Weerasena, S. L. & Beneragama, C. K. Application of Polyphasic OJIP Chlorophyll Fluorescent Transient Analysis as an Indicator for Testing of Seedling Vigour of Common Bean (Phaseolus vulgaris L.). Tropical Agricultural Research 31, 106–115 (2020).
3. Prity, S. A. et al. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma (2020) doi:10.1007/s00709-020-01517-w.
4. Rahman, M. A. et al. Arbuscular Mycorrhizal Symbiosis Mitigates Iron (Fe)-Deficiency Retardation in Alfalfa (Medicago sativa L.) Through the Enhancement of Fe Accumulation and Sulfur-Assisted Antioxidant Defense. International Journal of Molecular Sciences 21, 2219 (2020).
5. Vitorino, L. C. et al. Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria. Plants 9, 64 (2020).
6. Kasampalis, D. S., Tsouvaltzis, P. & Siomos, A. S. Chlorophyll fluorescence, non-photochemical quenching and light harvesting complex as alternatives to color measurement, in classifying tomato fruit according to their maturity stage at harvest and in monitoring postharvest ripening during storage. Postharvest Biology and Technology 161, 111036 (2020).
7. Soares, J. S., Santiago, E. F. & Sorgato, J. C. Conservation of Schomburgkia crispa Lindl. (Orchidaceae) by reintroduction into a fragment of the Brazilian Cerrado. Journal for Nature Conservation 53, 125754 (2020).
8. Poblete, T. et al. Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis. ISPRS Journal of Photogrammetry and Remote Sensing 162, 27–40 (2020).
9. Chiluwal, A. et al. Deterioration of ovary plays a key role in heat stress-induced spikelet sterility in sorghum. Plant, Cell & Environment 43, 448–462 (2020).
10.Maai, E., Nishimura, K., Takisawa, R. & Nakazaki, T. Diurnal changes in chloroplast positioning and photosynthetic traits of C4 grass finger millet. Plant Production Science 0, 1–13 (2020).
11.De Micco, V. et al. Dust accumulation due to anthropogenic impact induces anatomical and photochemical changes in leaves of Centranthus ruber growing on the slope of the Vesuvius volcano. Plant Biol J 22, 93–102 (2020).
12.Gil-Ortiz R et al. 2020. New Eco-Friendly Polymeric-Coated Urea Fertilizers Enhanced Crop Yield in Wheat. Agronomy 10: 438
13.Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., et al. 2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 4 ts, 4(7), 432–439.
14.Poblete, T., Camino, C., Beck, P. S. A.,A., Hornero, A., et al. 2020. Detection of Xylella fastidiosa in fastidiosa infection symptoms with airborne multispectr tral and thermal imagery: Assessing bandset redu eduction performance from hyperspectral analysis. ISPRS Journal of urnal of Photogrammetry and Remote Sensing, 162, 27–40.
15.Junker L. V., Rascher U., Jaenicke H., et al. 2019. Detection of plant stress responses in aphid-infested lettuce using non-invasive detection methods. Integrated Protection in Field Vegetables IOBC OBC-WPRS Bulletin Vol.142, 2019 . 8-16 8
16.Wu, L.B., Holtkamp, F., Wairich, A., & Frei, M. 2019. Potassium Ion Channel Gene OsAKT1 Affects Iron Translocation in Rice Plants Exposed to Iron Toxicity. Frontiers in Plant Science, 10.
17.Bartak, M., Hajek, J., Morkusova, J., et al. 2018. Dehydration-induced changes in spec pectral reflectance indices and chlorophyll fluorescence of Antarctic e of Antarctic lichens with different thallus color, and intrathall intrathalline photobiont. Acta Physiologiae Plantarum, 40(10 10).
18.Bartak, M., Mishra, K.B., Mareckova A, M. 2018. Spectral reflectance indices sense desiccation induced changes in the thalli of Antarctic lichen Dermatocarpon polyphyllizum. Czech Polar Reports 8 (2): 249-259.
19.Gálvez, S., Mérida-García, R., Camino Ino, C. et al. 2018. Hotspots in the genomic architectu hitecture of field droughtresponses in wheat as breeding targets. Functional & Integrative Genomics.
20.Nuttall, J. G., Perry, E. M., Delahunt Ty, A. J. et al. 2018. Frost response in wheat and early detection using proximal sensors. Journal of Agrono f Agronomy and Crop Science, 205(2), 220–234.
21.Sytar O., Zivcak M., Olsovska K., Breststic M. 2018 Perspectives in High-Throughput Phenotyping of Qualitative Traits at the Whole-Plant Level. In: Sengar R., Singh A. (eds) Eco-friendly Agro-biolog logical Techniques for Enhancing Crop Productivity. Springer, Singapore.