貼片電容1206 47nf 500V 473K X7R 攝像頭
貼片電容1206 47nf 500V 473K X7R 攝像頭
詳情請聯(lián)系:
業(yè)務經(jīng)理:劉東
手電容機:料號152170型號57671電壓
微電容信:料號150520型號54791電壓
Q料號Q:料號67580規(guī)格0364
* 單片機智能視頻監(jiān)控系統(tǒng)電路設計
防侵入式智能監(jiān)控系統(tǒng)
它是由紅外傳感器、監(jiān)視器、*控制器、記錄設備及報警輔助設備等幾部分組成。當有物體進入被監(jiān)控區(qū)域時紅外傳感器給控制系統(tǒng)相應的信號,控制系統(tǒng)對信號進行分析并自動啟動所對應的監(jiān)視器,當控制系統(tǒng)得到視頻信號時,系統(tǒng)控制記錄設備進行記錄,這樣不但可以節(jié)省記錄媒介,并且可以更進一步提高數(shù)據(jù)質(zhì)量,亦可降低便攜設備的能耗。
紅外信號處理電路設計
如圖4所示,熱釋電紅外傳感器的額定工作電流 15mA,工作電壓為2.2-15 V,由4個運放組成2級放大和1個比較電路。輔以4個施密特觸發(fā)器構(gòu)成的延時電路,在本電路里用的7805提供1個穩(wěn)定的電源。當給傳感器的+Vss端施加穩(wěn)定的5V電壓時,只要有300-320K的黑體溫度被檢測到時,傳感器的輸出電壓通過連續(xù)兩級信號放大,再由比較放大器比較放大,當達到一個設定的門限閾值時就輸出一個有效的信號經(jīng)過施密特觸發(fā)器組成的延時電路,使執(zhí)行機構(gòu)動作。
USB視頻數(shù)據(jù)采集系統(tǒng)接口電路設計
我們采用PDIUSBD12芯片,這是一種價格便宜、功能完善的并行接口芯片,它支持多路復用、非多路復用和 DMA并行傳輸。PDIUSBD12接口芯片遵從協(xié)議USB1.1,適合于不同用途的傳輸類型。PDIUSBD12需要外接微控制器(MCU)來進行協(xié)議處理和數(shù)據(jù)交換,它對MCU沒有特殊要求,而且接口方便靈活,因此設計師可以選用自己熟悉的MCU對芯片進行控制,也可利用Philips公司的固件結(jié)構(gòu)來縮短開發(fā)時間、降低風險、減小投資。
性能特點:PDIUSBD12除了具有USB設備的一般特性外,還具有如下特點:(1)是一種高性能的USB接口芯片,其內(nèi)部集成有 SIE(Serial Interface Engine)、320字節(jié)的FIFO、收發(fā)器和電壓調(diào)節(jié)器。(2)適用于大部分設備類規(guī)范??膳c任何外部微控制器/微處理器實現(xiàn)高速并行接口,其速度可高達2Mbit/s。(3)可進行*獨立的DMA操作。(4)主端點配置有雙緩沖,因而可提高數(shù)據(jù)的吞吐量、減小數(shù)據(jù)傳輸時間,輕松實現(xiàn)數(shù)據(jù)的實時傳輸。(5)當采用同步傳輸方式時,數(shù)據(jù)的傳輸速度為1Mbit/s;而采用批量傳輸方式的速度為1Mbyte/s。在使用上述方式進行數(shù)據(jù)傳輸時,可方便地使用多種中斷方式。(6)帶有可編程的時鐘輸出,與USB總線的連接可通過軟件來控制(Soft Connect TM)。(7)有兩種工作電壓可供選擇:分別為3.3±0.3V和3.6~5.5V。(8)輸出和數(shù)據(jù)傳輸狀態(tài)可通過USB連接指示燈來監(jiān)控。
紅外傳感信號處理模塊設計
為了節(jié)約電能, 本終端采用紅外傳感器來檢測監(jiān)控區(qū)域有無人員進入, 只在有人員進入監(jiān)控區(qū)域時, 終端才進入圖像采集、處理、傳輸狀態(tài)。本設計采用BISS0001芯片為熱釋電紅外傳感信號處理核心元件, 其應用電路如圖2 所示。
圖2 紅外信號處理電路
圖2 中,7805 為三端穩(wěn)壓集成電路, 為信號處理電路提供電源。BISS0001 芯片的第9 引腳為觸發(fā)控制信號Vc的輸入腳, 工作中應當保證輸入電壓, 可以通過調(diào)節(jié)電阻R3來達到目的。當有行人進入監(jiān)控區(qū)域時, 熱釋電紅外傳感器PIR 將檢測到的人體發(fā)出的紅外線轉(zhuǎn)化為電信號, 并將其送到BISS0001內(nèi)部, 信號經(jīng)BISS0001 處理后由2 腳輸出, 輸出Vo為低電平到高電平的跳變。如果BISS0001 工作在有效狀態(tài)不可重復觸發(fā)的情況下(即圖2 中S1 接低電平), 高電平的持續(xù)時間為Ts (Ts=49 152 R1C1), 在Ts時間段結(jié)束時,輸出Vo即刻由高電平進入低電平并被封鎖TI (TI =24R2C2 ) 時長; 對于有效狀態(tài)可重復觸發(fā)的情況來講( 即圖2 中S1 接高電平), 如果在前一Ts時間段內(nèi), 輸入的變化使得輸出有效狀態(tài)再次觸發(fā), 則Vo高電平信號將從此刻算起再持續(xù)一個Tx時長, 之后才轉(zhuǎn)換為低電平并進入封鎖時間TI。在封鎖時間內(nèi), 即使由于負載的切換而引入的干擾也不會改變輸出Vo的狀態(tài)。本設計中讓S1 接高電平, 紅外傳感信號處理電路的輸出信號Vo作為DM642 的外部中斷信號, 同時也作為TVP5150 芯片的節(jié)電模式輸入控制信號, 如圖2 所示。
圖像采集模塊設計
對于圖像采集模塊, 本設計采用TI 公司的TVP5150作為解碼芯片。TVP5150 是一款超低功耗的解碼芯片,正常操作時的功耗只有113 mW, 節(jié)電模式下功耗為1 mW, 并支持PAL/NTSC/SECAM 等格式, 它能將攝像頭所采集到的模擬圖像信號轉(zhuǎn)換為YUV4:2:2 格式的ITU-R BT.656 數(shù)字信號, 它可以接收2 路復合視頻信號(CVBS) 或1 路S -Video 信號, 通過I2C 總線設置內(nèi)部寄存器, 可以選擇輸出8 位4:2:2 的ITU-R BT.656 數(shù)字信號( 同步信號內(nèi)嵌), 以及8 位4:2:2 的ITU-R BT.601 信號(同步信號分離, 單獨引腳輸出)。TVP5150 與DM642 的硬件連接如圖3 所示。
圖3 TVP5150 與DM642 硬件連接圖
TVP5150 芯片的AIP1A 和AIP1B 為模擬信號的輸入端, 該引腳需接0.1~1 μF 的濾波電容,HSYNC 為行同步信號的輸出引腳。由于本設計采用了同步信號內(nèi)嵌的ITU-R BT.656 格式, 所以該引腳未與DM642 相關引腳相連接。PND 引腳為省電模式的控制信號輸入端, 低電平有效, 與紅外傳感信號處理電路的輸出信號Vo連接,當監(jiān)控區(qū)域無行人走動時,Vo為低電平, 這將使TVP5150 芯片進入省電模式。YOUT[6:0] 為BT.656/YUV數(shù)據(jù)輸出引腳,YOUT [7]/I2CSEL 是BT.656/YUV 數(shù)據(jù)的第7 位, 也是I2C 接口設備地址設置位,TVP5150 設備地址由I2CSEL 引腳所接的上拉電阻或下拉電阻確定,I2CSEL 引腳的狀態(tài)與設備地址映射關系如表1 所示,DM642 和TVP5150 應答過程中需要從片TVP5150 的地址。SCL、SDA 分別為I2C 接口的串行時鐘和數(shù)據(jù)引腳,DM642 對TVP5150 內(nèi)部寄存器的訪問通過I2C 總線實現(xiàn)。DM642 芯片的VP0D [19:0] 為視頻口VP0 的數(shù)據(jù)總線引腳, 其中VP0D [8:2] 與多通道串行口McBSP0 引腳復用, 為了將VP0D [8:2] 配置為VP0 的低位數(shù)據(jù)引腳,需要把PERCFG 寄存器中的VP0EN 位置1。VP0CLK0 為外部像素時鐘輸入引腳, 與視頻解碼芯片TVP5150 的像素時鐘輸出引腳PCLK/SCLK 連接。
TOP2 基于DSP的視頻監(jiān)控系統(tǒng)硬件電路設計
目前視頻監(jiān)控廣泛應用于安防監(jiān)控、工業(yè)監(jiān)控和交通監(jiān)控等領域。視頻監(jiān)控系統(tǒng)大致經(jīng)歷3個階段:首先是基于模擬信號的電視監(jiān)控系統(tǒng),其功能單一、易受干擾且不易擴展;隨后出現(xiàn)基于PC機的圖像監(jiān)控系統(tǒng),其終端功能較強.但價格昂貴,穩(wěn)定性差;近年來,隨著嵌入式技術(shù)成熟,嵌入式視頻采集處理系統(tǒng)具有可靠性高、速度快、成本低、體積小、功耗低、環(huán)境適應性強等優(yōu)點。
視頻信號處理電路
本設計采用SONY公司信號處理器件CXD3142R作為信號處理器。CXD3142R是于對Ye,Cv,Mg和G補色單片CCD輸出信號進行處理的低功耗、高效率的信號處理器;具有自動曝光和自動白平衡功能,可同時輸出復合視頻信號和YUV 8位數(shù)字信號輸出。內(nèi)部集成9位A/D轉(zhuǎn)換器同步信號產(chǎn)生電路、外部同步電路和時鐘控制電路。此外,CXD3142R還具有串口通信功能,用戶可在PC機中預先設定好DSP中的寄存器值,通過串口下載到DSP,并對圖像信號進行自動曝光和自動白平衡等處理。圖2為視頻信號處理模塊電路連接圖。
圖 2中,H1,H2,XVl,XV2,XV3,XV4是CCD圖像傳感器的時序驅(qū)動信號,EEPROM用來存儲DSP初始化的寄存器值。D0~D7是YUV 數(shù)字信號。其具體工作流程:將CCD圖像傳感器采集的模擬信號經(jīng)CXA2096N進行相關預處理后,相應數(shù)字信號經(jīng)VIN引腳傳給 DSP(CXD3142),DSP接收數(shù)字信號后,利用其內(nèi)部AE/AWB檢測電路、同步信號產(chǎn)生電路、外同步電路以及相關算法對其進行相關處理,處理完成后在行(H引腳)、場(V引腳)信號及時鐘信號(PCLK)的控制下將8位數(shù)字信號經(jīng)過D0~D7引腳傳給FPGA模塊進行相關處理。通過引腳SCK、 SI、SO、XCS串口通信,通過CSROM、CASI、CSASO、CASCK引腳與外部EEPROM通信,實現(xiàn)DSP相關的初始化。此外,IO引腳輸出經(jīng)DSP處理過的復合視頻信號,通過相關接口直接在CRT顯示器上顯示圖像處理結(jié)果。
外圍接口模塊設計
本設計支持RS-232C串口通信。但該串口通信需把3.3 V邏輯電平轉(zhuǎn)化成RS-232C標準電平。因此采用SP3232E系列器件完成電平轉(zhuǎn)換。SP3232E可從+3.0~+5.5 V的電源電壓產(chǎn)生2Vce的RS-232C電壓電平。該系列適用于+3.3 V系統(tǒng)。SP3232E器件的驅(qū)動器滿載時典型數(shù)據(jù)速率為235 kb/s。圖4為系統(tǒng)設計的接口電路圖。
需要注意的是,由于采用SP3232E器件,其驅(qū)動能力有限,該接口電路只適用于近距離傳輸。如果要進行遠距離傳輸,則必須加強信號傳輸能力。
智能視頻監(jiān)控信號采集電路模塊設計
矩陣切換器電路設計
本系統(tǒng)設計的是容量為32路音視頻的監(jiān)控,為簡化設計,及調(diào)試、安裝、升級等的方便,32路音視頻不在一塊PCB板上處理,而是分成4塊子板,每塊子板處 N8路音視頻,實現(xiàn)8路音視頻通道的8選1輸出功能,即4塊子板組成一個矩陣切換器,在同一時間實現(xiàn)32選4輸出功能。每塊子板的電路圖如圖3所示。
語音信號采集與處理電路設計
因為要采集教室各個位置(一般在20~50m2范圍內(nèi))的語音信號,使用普通的話筒放大電路顯然達不到要求。本系統(tǒng)采用對數(shù)放大電路進行語音放大,比較清晰地采集到了50m2范圍內(nèi)各個位置的語音信號。設計的對數(shù)放大電路如圖5所示。IC2為運算放大器,系統(tǒng)選用LM358實現(xiàn)二級運算放大。
利用傳感技術(shù)和電子技術(shù)系統(tǒng)設計思路簡單、成本低廉、方便實用。對提高學生自主學習的自覺性,監(jiān)控自主學習設備和軟件平臺運行情況,防止人為破壞造成的不必要損失,提高設備運行的穩(wěn)定性和可靠性等起到了非常重要的作用。
欲了解更多視頻監(jiān)控相關解決方案與電路圖設計,可關注電子發(fā)燒友榮譽出品的Designs of week欄目:
TOP3 智能視頻監(jiān)控系統(tǒng)以太網(wǎng)電路設計
視頻監(jiān)控系統(tǒng)以其直觀、方便等特點,一直應用于許多場合。隨著嵌入式系統(tǒng)和通信技術(shù)的快速發(fā)展,傳統(tǒng)的基于模擬信號的監(jiān)控方式己經(jīng)不能滿足日益增長的市場需求。本文在深入研究ARM體系結(jié)構(gòu)、Linux軟件結(jié)構(gòu)、視頻服務器之上,將基于ARM的嵌入式開發(fā)方法與網(wǎng)絡技術(shù)相結(jié)合,實現(xiàn)了基于 S3C2440和嵌入式 Linux的遠程圖像監(jiān)控系統(tǒng)。
以太網(wǎng)電路模塊設計
基于以太網(wǎng)的網(wǎng)絡連接典型的應用形式是Ehernet和TCP/IP的組合,它的底一層是以太網(wǎng),網(wǎng)絡層和傳輸層采用*的標準TCP/IP協(xié)議。本系統(tǒng)中采用的是Crystal公司的CS8900,該芯片是一款單口的10/ 100Mbps快速以太網(wǎng)物理層接口芯片[8]。它與S3C2440的接口電路如圖所示。
簡易智能視頻監(jiān)控切換器電路設計
電路原理:電路的核心是一塊視頻切換電路MAX454。它具有質(zhì)量良好的輸出圖像和很低的相位失真特點。電路內(nèi)部包含4路視頻輸入(IN0~IN3)和一個低輸入阻抗的線路放大、驅(qū)動器,兩個地址輸入(A0、A1),一個視頻輸出和兩個電源端子。監(jiān)控鏡頭通過J1-J4與切換器視頻輸入端相聯(lián)。75Ω電阻構(gòu)成輸入的終端電阻。內(nèi)部放大器的增益由接在IC1的13腳的反饋網(wǎng)絡設置。反饋網(wǎng)絡由R5-R8和C3構(gòu)成。其增益設置為2是為了補償在終端電阻R9(75Ω)上的消耗。后在輸出端J5的增益為1。由于電路用于處理高頻的視頻信號,我們在制作時應注意必需要采用印刷電路板,請?zhí)貏e注意在信號端子周圍需用接地銅箔保護,以免引入噪聲和串擾。在安裝元器件時,建議先焊裝電阻和二極管,然后用前面的零件剪下來的引線用做兩根跳線。之后是S1和IC2、IC3的插座,但是 IC1不要使用插座。在這之后是 Q1~Q4及電容和LED1。后將IC1直接焊接在電路板上,并盡可能縮短接腳引線以有利于信號傳輸。它采用視頻切換集成電路,可以將兩、三或四個鏡頭的監(jiān)控畫面依次顯示在一個監(jiān)視器上。切換鏡頭的數(shù)量由電路板上的DIP開關設定。在自動模式下,鏡頭的切換速度可由面板上的旋扭從1到20秒之間調(diào)整。手動模式時,可將一路監(jiān)控鏡頭畫面固定在監(jiān)視器上,并可通過手動觸發(fā)開關來逐個控制切換監(jiān)控鏡頭。 電源部分由T1、IC4、IC5和D5、D6及C6~C9構(gòu)成±5伏電源。
基于視頻監(jiān)控系統(tǒng)圖像傳感器接口電路模塊設計
電路原理:OV9650 與處理器的接口包括SCCB接口、數(shù)據(jù)輸出接口和控制接口等3 部分。SCCB 接口起到傳遞處理器提供的初始化OV9650內(nèi)部寄存器參數(shù)的作用, 其數(shù)據(jù)線SIOD 和時鐘線SI-OC, 相當于I2C 總線中的SDA 與SCL。也就是說, SC-CB 起到I2C 總線的作用。OV9650 是I2C 總線的從器件, S3C2440 是對應的主器件。I2 C 總線采用串行方式從高位到低位傳輸字節(jié)數(shù)據(jù), 每個字節(jié)傳輸完后, 主控制器將SDA 置為高電平并釋放, 等待從設備發(fā)送確認信號。OV9650 內(nèi)嵌了一個10 位A/ D 轉(zhuǎn)換器, 對應有10 個數(shù)據(jù)輸出口D[ 0: 9] 。輸出圖像數(shù)據(jù)的格式可以為10 位原始RAW, RGB 或經(jīng)過內(nèi)部DSP 轉(zhuǎn)換的8 位RGB/ YCbCr。本系統(tǒng)選擇的微處理器芯片S3C2440的CAM IF 單元支持8 位的YU V/ YCbCr 格式, 故需將OV9650 的數(shù)據(jù)接口D[ 9: 2] 與CAM IF 的數(shù)據(jù)口CAMDAT A[ 7: 0] 相連接。OV9650 的XVCLK 用于接收CPU 輸出的24 MHz 的工作時鐘。OV9650 內(nèi)部產(chǎn)生的幀同步信號VSYNC、行同步信號HREF、像素時鐘信號PCLK 等3 個時鐘信號傳入ARM 芯片中, 用于控制圖像采集。每一個VSYN C 脈沖表示一幀圖像數(shù)據(jù)采集的開始, HREF 的高電平則表示采集一行圖像數(shù)據(jù), 圖像傳感器按從左到右的順序在每個PCLK脈沖過程中依次采集一個字節(jié)的數(shù)據(jù), 直到一幀圖像數(shù)據(jù)全部采集完成。攝像頭使用的是CAM130 模塊, 其中的圖像傳感器為OV9650, 該部分原理圖及接口電路如圖2 所示。
圖2 CAM130 模塊原理圖及OV9650 接口電路
TOP4 智能視頻監(jiān)控終端電路模塊設計
紅外傳感信號處理電路模塊設計
本終端采用紅外傳感器來檢測監(jiān)控區(qū)域有無人員進入, 只在有人員進入監(jiān)控區(qū)域時, 終端才進入圖像采集、處理、傳輸狀態(tài)。本設計采用BISS0001芯片為熱釋電紅外傳感信號處理核心元件, 其應用電路如圖2 所示。
圖2 紅外信號處理電路
圖2 中,7805 為三端穩(wěn)壓集成電路, 為信號處理電路提供電源。BISS0001 芯片的第9 引腳為觸發(fā)控制信號Vc的輸入腳, 工作中應當保證輸入電壓, 可以通過調(diào)節(jié)電阻R3來達到目的。當有行人進入監(jiān)控區(qū)域時, 熱釋電紅外傳感器PIR 將檢測到的人體發(fā)出的紅外線轉(zhuǎn)化為電信號, 并將其送到BISS0001內(nèi)部, 信號經(jīng)BISS0001 處理后由2 腳輸出, 輸出Vo為低電平到高電平的跳變。如果BISS0001 工作在有效狀態(tài)不可重復觸發(fā)的情況下, 高電平的持續(xù)時間為Ts (Ts=49 152 R1C1), 在Ts時間段結(jié)束時,輸出Vo即刻由高電平進入低電平并被封鎖Ti (Ti =24R2C2 ) 時長; 對于有效狀態(tài)可重復觸發(fā)的情況來講( 即圖2 中S1 接高電平), 如果在前一Ts時間段內(nèi), 輸入的變化使得輸出有效狀態(tài)再次觸發(fā), 則Vo高電平信號將從此刻算起再持續(xù)一個Tx時長, 之后才轉(zhuǎn)換為低電平并進入封鎖時間Ti。在封鎖時間內(nèi), 即使由于負載的切換而引入的干擾也不會改變輸出Vo的狀態(tài)。本設計中讓S1 接高電平, 紅外傳感信號處理電路的輸出信號Vo作為DM642 的外部中斷信號, 將Vo與DM642 的GP[5:4]連接, 同時也作為TVP5150 芯片的節(jié)電模式輸入控制信號。
圖像采集電路模塊設計
對于圖像采集模塊, 采用TI 公司的TVP5150作為解碼芯片。TVP5150 是一款超低功耗的解碼芯片,正常操作時的功耗只有113 mW, 節(jié)電模式下功耗為1 mW, 并支持PAL/NTSC/SECAM 等格式, 它能將攝像頭所采集到的模擬圖像信號轉(zhuǎn)換為YUV4:2:2 格式的ITU-R BT.656 數(shù)字信號, 它可以接收2 路復合視頻信號 或1 路S -Video 信號, 通過I2C 總線設置內(nèi)部寄存器, 可以選擇輸出8 位4:2:2 的ITU-R BT.656 數(shù)字信號, 以及8 位4:2:2 的ITU-R BT.601 信號(同步信號分離, 單獨引腳輸出)。TVP5150 與DM642 的硬件連接如圖所示。
圖3 TVP5150 與DM642 硬件連接圖
TVP5150 芯片的AIP1A 和AIP1B 為模擬信號的輸入端, 該引腳需接0.1~1 μF 的濾波電容,HSYNC 為行同步信號的輸出引腳。由于本設計采用了同步信號內(nèi)嵌的ITU-R BT.656 格式, 所以該引腳未與DM642 相關引腳相連接。PND 引腳為省電模式的控制信號輸入端, 低電平有效, 與紅外傳感信號處理電路的輸出信號Vo連接,當監(jiān)控區(qū)域無行人走動時,Vo為低電平, 這將使TVP5150 芯片進入省電模式。YOUT[6:0] 為BT.656/YUV數(shù)據(jù)輸出引腳,YOUT [7]/I2CSEL 是BT.656/YUV 數(shù)據(jù)的第7 位, 也是I2C 接口設備地址設置位,TVP5150 設備地址由I2CSEL 引腳所接的上拉電阻或下拉電阻確定,I2CSEL 引腳的狀態(tài)與設備地址映射關系,DM642 和TVP5150 應答過程中需要從片TVP5150 的地址。SCL、SDA 分別為I2C 接口的串行時鐘和數(shù)據(jù)引腳,DM642 對TVP5150 內(nèi)部寄存器的訪問通過I2C 總線實現(xiàn)。DM642 芯片的VP0D [19:0] 為視頻口VP0 的數(shù)據(jù)總線引腳, 其中VP0D [8:2] 與多通道串行口McBSP0 引腳復用, 為了將VP0D [8:2] 配置為VP0 的低位數(shù)據(jù)引腳,需要把PERCFG 寄存器中的VP0EN 位置1。VP0CLK0 為外部像素時鐘輸入引腳, 與視頻解碼芯片TVP5150 的像素時鐘輸出引腳PCLK/SCLK 連接。
基于DSP的智能視頻監(jiān)控圖像處理電路模塊設計
本監(jiān)控系統(tǒng)采用一片TI的TPS3307-33D作為電源檢測IC。該器件定義在其供電1.1V時其 /Reset即可輸出有效的信號。如圖4所示,在本系統(tǒng)中,該電路可以完成對5V、3.3V和1.8V三種供電電壓的監(jiān)測,并可以對系統(tǒng)的三種器件(C6211、EPLD和 AT89C2051)同時進行上電復位和手工復位。
圖4 TPS3307電源監(jiān)控電路
其中+3.3V是TMS320C6211的I/O接口所需的電壓,這是DSP外圍接口電壓,必須能夠保持穩(wěn)定、持續(xù)供電。其外接的SDRAM和 FLASH ROM都是3.3V器件,若電壓不穩(wěn),這些器件無法穩(wěn)定工作,容易導致?lián)p耗甚至燒毀這些器件。+1.8V供電是為了滿足TMS320C6211的CPU核心工作電壓需要。對于TMS320C6211來說,其工作頻率為150MHz,對電壓的變化非常敏感。電壓過高會使器件損傷,電壓過低芯片會自動復位。
TOP5 基于TMS320DM643的視頻監(jiān)控系統(tǒng)電路模塊設計
視頻編、解碼電路模塊設計
視頻解碼模塊的主要功能是將從攝像頭采集來的PAL/NTSC復合視頻信號進行采樣、量化得到任意分辨率的數(shù)字信號,為DM643提供視頻流。視頻解碼器選用的是TI公司的TVP5150視頻解碼芯片。該芯片是一個高性能數(shù)字視頻解碼器,可以將NTSC/PAL制模擬視頻信號轉(zhuǎn)換成BT.656格式的標準數(shù)字視頻信號。下面是視頻解碼的濾波部分電路圖:
圖2 濾波電路圖
視頻解碼器TVP5150視頻信號輸入范圍為0.75Vpp,而外部視頻信號輸入范圍一般為1Vpp,所以外部視頻輸入與TVP5150視頻輸入之間串接到地分壓電阻網(wǎng)絡,以達到TVP5150所需的輸入電平。DM643支持標準的BT.656格式的數(shù)字視頻數(shù)據(jù)流的輸入格式,能與TVP5150的視頻數(shù)據(jù)流進行無縫連接。
串行通信電路模塊設計
該模塊實現(xiàn)的功能是DSP芯片通過異步串行總線RS-485向機械控制電路(云臺)發(fā)送指令,實現(xiàn)攝像頭的自動跟蹤。該系統(tǒng)采用的是TL16C752通用異步收發(fā)器UART,它采用8位異步并行存儲器接口,并采用+3.3V電源供電,可以與DM643的外部存儲器接口(EMIF)直接連接。
圖4 串口連接圖
一種3G移動視頻監(jiān)控系統(tǒng)電源電路模塊設計
系統(tǒng)電源分為+5V、+3.3V、+1.8V、+1.2V 四種,系統(tǒng)主供電電源為+5V,其余均由+5V 電源供給。因此,采用一片TPS75003 和一片TPS62040 完成系統(tǒng)四種電源的轉(zhuǎn)換。設計用TPS75003 的SW1 引腳經(jīng)過SI2323 續(xù)流整形后輸出1.2V 電壓用于DM6446 內(nèi)核供電,IS1 引腳連接參考電壓,F(xiàn)B1 引腳接輸出1.2V 電壓作為反饋,SW2 引腳輸出3.3V 電壓用于DM6446 外設接口供電。TPS62040 的SW1 和SW2 引腳短接后輸出1.8V 電壓用于DM6446 存儲器接口供電,F(xiàn)B 引腳連接1.8V 作為反饋輸入。這樣,用一片TPS75003 和TPS62040 電源管理芯片就可以滿足本系統(tǒng)供電。TPS75003 和TPS62040電源轉(zhuǎn)換電路如圖2 所示。
圖2 TPS75003 和TPS62040 電源轉(zhuǎn)換電路圖
TOP6 基于Internet的智能視頻遠程監(jiān)控系統(tǒng)電路模塊設計
在ARM9和ARM11后的就是當下熱門的ARM- Cortex內(nèi)核,該內(nèi)核是ARM公司新的內(nèi)核,增加了眾多的中斷控制器,內(nèi)核效率更高,單位執(zhí)行代碼效率也更高,Cortex系列分為三個子系列有A 系列,R系列,M系列。A系列主要面向應用類的,更加,主頻也更快等優(yōu)點;R系列主要面向于實時控制,主要有響應特別快等優(yōu)點;而M系列主要面向微控制器,特點是低功耗,低成本,適合低端控制場合。
主控電路采用TI公司的Stellaris系列的LM3S8962,由于我們考慮了是自己制板,因此我們的MCU做成了小系統(tǒng)板,主控芯片的電路如下。
圖4-1 主控芯片
攝像頭電路設計
本課題所采用的攝像頭是數(shù)字接口的,因此接線很簡單,八根數(shù)據(jù)線與攝像頭的灰度圖像輸出信號,MCU直接通過GPIO口來讀取數(shù)據(jù)。行中斷和場中斷的信號線需要加電容和電阻濾波,否則可能引起中斷不穩(wěn)定。
圖4-2 攝像頭接口電路
熱敏電阻傳感器電路設計
熱敏電阻一般分為正溫和負溫兩種,根據(jù)其靈敏度不同,采用合適的熱敏電阻在合適的場合使用,如果需要精度很高的話可以采用PT-100鉑電阻,需要電橋電路配合信號處理,并且需要非線性校正,而我們的方案是的同工電阻分壓通過AD來采集數(shù)據(jù),進行簡易的處理之后就可以通過上位機顯示。
圖4-4 溫度傳感器電路
時鐘電路設計
時鐘電路采用外部的DS1302電路,由于ARM內(nèi)部也集成了RTC,因此本系統(tǒng)中可以使用兩套時鐘,該時鐘有外部鈕扣電池供電,不會因為系統(tǒng)掉電而停止運行,時鐘芯片與主芯片通過串行通信進行配置和傳輸數(shù)據(jù),使用很方便。
圖4-5 時鐘模塊
TOP7 基于89C51單片機的智能視頻監(jiān)控系統(tǒng)控制電路設計
系統(tǒng)硬件電路設計
本系統(tǒng)采用89C51單片機與PC鍵盤接口相連,圖2給出了系統(tǒng)硬件電路原理。其中P3.0和P3.1分別與主機鍵盤接口的時鐘線CLK和數(shù)據(jù)線 DATA相連,P2口與4×4鍵盤矩陣相連,P0口經(jīng)過驅(qū)動后與輸入輸出報警設備相連接。為保證鍵盤可靠工作,系統(tǒng)配置了看門狗電路MAX813L,另外,系統(tǒng)還配置了蜂鳴器,每次按鍵均有聲音提示。
圖2 系統(tǒng)硬件電路原理
兩種智能視頻監(jiān)控系統(tǒng)中矩陣切換電路設計
介紹了兩種基于不同芯片組合的矩陣切換-字符疊加系統(tǒng),包括這兩種實現(xiàn)方案的元件構(gòu)成、結(jié)構(gòu)框架、工作原理和它們各自的特點及應用范圍。當系統(tǒng)視、音頻信號的輸入、輸出通道不是很多,尤其在輸出通道較少且不需要漢字字符疊加的情況下,該文豪以獲得較高的性價比。
電路原理:在設計中,輸入8路視頻信號經(jīng)過標題、時間疊加后送去錄像,同時送往矩陣切換電路選出一路進行監(jiān)視。監(jiān)視時可采用自動定時切換或手動切換。計了較多的面板按鍵。同時8路疊加芯片的片選線、數(shù)據(jù)線、CLK線以及切換模塊CC4051的地址線也較多,從而造成89C52單片機的 I/O口比較緊張。為了解決這個問題,采取了三種辦法:(1)使用移位寄存器,用CPU串口擴展I/O口來控制面板按鍵;(2)視、音頻信號切換和音量切換的6根地址線均從P1口引出,同時8路疊加芯片共用數(shù)據(jù)線、CLK線,這兩根線也從P1口引出;(3)CPU的P0口蚋射為總線方式,控制時鐘芯片 DS12887。同時P2口映射為I/O口方式,控制8路疊加芯片的片選信號。在設置存儲系統(tǒng)的信息時,若信息量不是很多,可以不外擴RAM,而將設置信息保存在時鐘芯片DS12887中,其內(nèi)部含有114個字節(jié)不揮發(fā)的RAM。另外在設置標題、時間等信息時,采有了菜單界面方式,同時使用疊加芯片 μPD6450提供的內(nèi)部彩色視頻信號,既美觀也方便用戶操作。
大容量、漢字字符疊加系統(tǒng)電路設計
電路原理:當系統(tǒng)視、音頻信號的輸入、輸出通道數(shù)較多,且需要進行漢字字符疊加時可以采用該方案。在設計中,48路輸入視頻信號經(jīng)過矩陣切換后輸出12路信號,然后送往字符疊加模塊進行漢字標題和時間的疊加,后送往12路監(jiān)視器。整個系統(tǒng)分為三個模塊,控制模塊、矩陣切換模塊和字符疊加模塊。下面介紹各模塊主要元件的構(gòu)成。
元件構(gòu)成控制模塊
TOP8 基于DSP+FPGA多視頻監(jiān)控的采集電路模塊
視頻采集電路模塊設計
AD9203是ADI公司出品的一款單通道、低電壓的高速A/D轉(zhuǎn)換器,采樣速率可達40 Ms/s。其精度穩(wěn)定可靠,在全采樣帶寬范圍內(nèi),始終基本保持著10位的精度;在40 Ms/s的采樣速率下,ENOB(有效位數(shù))仍然達到9.55位,差分非線性度±0.25 LSB,信噪比和失真度保持在59 dB左右。AD9203的工作電壓比較靈活,允許住2.7~3.6 V范圍內(nèi)變動,特別適合于便攜式設備在低電壓下的高速操作。在3 V的供電下,40 Ms/s全速工作時,功耗只有74 mW;在5 Ms/s時,功耗將會降到17 mW,在待機模式下,功耗只有0.65 mW。對于輸入信號的峰峰值,通常設置為1 Vp-p或者2 Vp-p。另外,AD9203允許外部電壓參考,可以根據(jù)設計需要,在1~2 V間靈活地設置輸入信號的峰峰值。
圖2 AD9203的電路應用原理圖
基于ARM9的遠程無線智能視頻監(jiān)控電路設計
圖像采樣接口電路設計
S3C2440的攝像頭接口支持ITU-R BT.601/656 YCbCr8比特標準的圖像數(shù)據(jù)輸入,大可采樣4096×4096像素的圖像。攝像頭接口可以有兩種模式與DMA控制器進行數(shù)據(jù)傳輸:一種是P端口模式,把從攝像頭接口采樣到的圖像數(shù)據(jù)轉(zhuǎn)為RGB數(shù)據(jù),并在DMA控制下傳輸?shù)絊DRAM;另一種是C端口模式,把圖像數(shù)據(jù)按照YCbCr4:2:0或 4:2:2的格式傳輸?shù)絊DRAM。上述兩種工作模式都允許設置一個剪輯窗口,只有進入這個窗口的圖像數(shù)據(jù)才能夠傳輸?shù)絊DRAM。S3C2440的攝像機接口接收ITU標準的圖像數(shù)據(jù),不能直接接收CCD攝像機輸出的模擬視頻信號,因此還需要1片SAA7113視頻解碼芯片。
SAA7113 的CE 引腳與S3C2440 的一個GPIO 引腳相連,這樣可以控制SAA7113的工作狀態(tài)。當無須采集圖像時,將該GPIO口輸出低電平,使SAA7113芯片處于低功耗狀態(tài),節(jié)省電能的消耗。對照圖2和圖3可以看出,SAA7113芯片就是圖2的“外部圖像傳感器”。它向嵌入式系統(tǒng)的攝像機接口提供了采樣到的標準ITU視頻數(shù)據(jù)。這些數(shù)據(jù)經(jīng)過 DMA的P端口或C端口控制傳輸?shù)搅藘?nèi)存,這樣就可以在內(nèi)存中對圖像數(shù)據(jù)作進一步的加工處理。
攝像機云臺控制電路設計
攝像機的云臺控制接口采用RS485通信方式。因S3C2440內(nèi)部只有RS232的控制器,為此使用MAX485芯片設計了一個RS232到RS485的轉(zhuǎn)換接口。該電路原理如圖4所示。
遠程圖像無線監(jiān)控系統(tǒng)在高壓輸電線路的覆冰監(jiān)測中得到了成功的應用。在野外全天候環(huán)境下,適時準確地監(jiān)測高壓輸電線路覆冰厚度,同時發(fā)出預警處理信息,從而有效地避免了斷纜事故的發(fā)生。遠程圖像監(jiān)控技術(shù)是隨著計算機技術(shù)、數(shù)字通信技術(shù)、網(wǎng)絡技術(shù)、自動控制技術(shù)以及LSI、VLSI集成電路的發(fā)展而發(fā)展的,而基于ARM9嵌入式處理器的本系統(tǒng)正是這些技術(shù)學科相互交叉和融合發(fā)展的集中體現(xiàn)。實踐證明,ARM9處理器的低功耗、高性能和多功能的特性滿足了遠程圖像監(jiān)控的許多特殊需求,是實現(xiàn)遠程圖像監(jiān)控的很好選擇。
TOP9 基于CC2530的無線路燈節(jié)能智能監(jiān)控系統(tǒng)電路設計
ZigBee 新一代SoC 芯片CC2530 是TI 公司推出的用于嵌入式應用的片上系統(tǒng),是使用IEEE 802.15.4 標準、ZigBee 和ZigBee RF4CE 的一個片上系統(tǒng)解決方案。CC2530 內(nèi)部已集成了一個8051 微處理器與高性能的RF 收發(fā)器。CC2530 能夠以非常低的總材料成本建立強大的網(wǎng)絡節(jié)點, 擁有較大的快閃記憶體, 其存儲容量多達256 B, 它是理想的ZigBee 專業(yè)應用芯片; 支持新RemoTI 的ZigBee RF4CE, 這是業(yè)界符合ZigBeeRF4CE 兼容的協(xié)議棧。此外,CC2530 具有不同的運行模式, 使得它尤其適應超低功耗要求的系統(tǒng), 運行模式之間的轉(zhuǎn)換時間短, 進一步確保了低能源消耗。圖3 為CC2530 外圍電路設計。圖 中的D3 倒F 天線是單端天線, 也就是非平衡天線, 所以需要用電容、電感組成一個非平衡變壓器(BALUN) , 如圖 中的虛線框圖, 來滿足RF 輸入/輸出匹配的要求。
圖3 CC2530 外圍電路
PCB 天線設計難度較大, 通常還需要仿真工具的支持, 但TI 公司已經(jīng)把倒F 型PCB 天線設計的規(guī)格公布了。對于終端設備的設計來說,PCB 天線不失為一種較經(jīng)濟的選擇, 因為其通信距離可以滿足本系統(tǒng)的要求。路燈節(jié)點設計采用光敏電阻傳感器檢測的方式采集路燈狀態(tài)信息并通過無線傳回主控中心( 協(xié)調(diào)器), 同時經(jīng)主控中心處理后, 將相應的控制命令發(fā)送至的路燈節(jié)點。協(xié)調(diào)器的設計是根據(jù)電子時鐘產(chǎn)生的精確時間和光敏電阻采集外界光線的強弱來控制整個網(wǎng)絡的路燈。在下半夜采用隔柱亮燈(開部分燈) 的方法降低電能消耗; 在大白天, 采用關全部路燈的方法, 如果天氣突然轉(zhuǎn)陰, 系統(tǒng)就會自動打開部分路燈, 滿足人們照明要求; 傍晚時分, 用光敏傳感器采集的光線強弱來判斷是否需要開關燈, 做到及時開關燈。根據(jù)以上的控制實現(xiàn)智能和節(jié)能控制。表1 所示的為協(xié)調(diào)器主控制路燈的狀況( 此表要根據(jù)城市的實際情況制定)。
視頻信號選擇電路的設計
系統(tǒng)外部前端設備攝像機錄入各個門禁場所視頻,通過視頻傳輸線路傳到主機控制系統(tǒng)的視頻信號選擇電路視頻信號。選擇電路具有四路視頻輸入、四路視頻輸出,一個公共視頻端輸出。一方面視頻信號經(jīng)過MAX4090進行阻抗匹配后從四路視頻輸出,供管理人員查看門禁的現(xiàn)場活動情況,同時在公共視頻端不僅可以輸出一路視頻,而且可以通過視頻處理板對視頻信息進行存儲并通過網(wǎng)絡傳輸視頻信息;輸出的視頻信號通過FPGA的控制轉(zhuǎn)換為可視信號并存儲到PC中,同時 FPGA可以不斷檢測視頻警報信號量來觸發(fā)報警信號。
如圖2所示為只有1路輸入,1路輸出并帶有一路公共視頻的電路圖作為視頻選擇電路系統(tǒng)的講解示意,J1為視頻信號輸入端,J5,J9為視頻信號輸出端.CON2為短路跳線對相應的通道進行連通與斷開。當CON2斷開時,相應的通道連通,視頻信號從左邊輸入,經(jīng)過匹配后從右邊輸出;當CON2連通時,則視頻信號輸入后不能經(jīng)過匹配處理而直接輸出。然后利MAX4090用進行阻抗匹配進行多路視頻的選擇輸出。該電路使用了交流耦合輸出方式。從技術(shù)特征出發(fā),將視頻信號輸出到媒體顯示設備的普遍方法是交流耦合,這使得接收電路可以在自己的輸入端建立共模電平,該電平獨立于輸入視頻信號的直流電平。一個 75歐的串聯(lián)電阻應該盡可能近地放在靠近輸出端的位置,這有助于隔離從輸出端產(chǎn)生的下行寄生干擾,并提供信號條件。
USB接口電路的設計
為了方便的使用USB攝像頭及USB的數(shù)據(jù)下載通道,系統(tǒng)總需要設計USB接口電路。
USB電路如圖3所示,USB功能采用常見的CH375芯片作為USB借口控制芯片。CH375是一個USB總線的通用借口芯片,支持USB-HOST 主機方式和USB-DEVICE/SLAVE設備方式。 在本地端,CH375具有8位數(shù)據(jù)總線和讀、寫、片選控制線以及中斷輸出,可以方便地掛接到單片機/DSP/MCU/MPU等控制器的系統(tǒng)總線上。在 USB主機方式下,CH375 還提供了串行通訊方式,通過串行輸入、串行輸出和中斷輸出與單片機/DSP/MCU/MPU等相連接。CH375有串口和并口兩種與單片機的連接方式,在本系統(tǒng)中,CH375 芯片是通過并行方式連接到副控制芯片的,CH375的 TXD引腳通過1千歐左右的下拉電阻接地或者直接接地,從而使CH375工作于并口方式。這種并行連接方式*的提高了數(shù)據(jù)的傳輸速率。
*0 FPGA的EPROM及單片機存儲電路設計
系統(tǒng)中使用了AT24C512EEPROM器件作為主要存儲芯片,它的存儲容量為512K及單片機對AT24C51系列E2PROM的讀寫操作*遵守 12C總線的主收從發(fā)和主發(fā)從收的規(guī)則。數(shù)據(jù)的傳送由四部分組成:起始(START)條件、從機地址的發(fā)送、數(shù)據(jù)的傳送和停止(STOP)條件。每一個時鐘高電平中期間傳送一位數(shù)據(jù),而且在SCL線為高電平時SDA線上的數(shù)據(jù)必須保持穩(wěn)定,否則將認為是一個控制信號。這樣設計的優(yōu)點體現(xiàn)在其簡單性和有效性上。
如圖4所示電路,一般A0、A1、WP接VCC或GND,SCL、SDA接上拉電阻(上拉電阻的阻值可參考有關數(shù)據(jù)手冊選擇,通??蛇x5K到10K的電阻,本設計中選用的電阻阻值為10K)后再接單片機的普通I/O口,即可實現(xiàn)單片機對AT24C512的操作。在對AT24C512開始操作前,需要先發(fā)一個8位的地址字來選擇芯片以進行讀寫。其中要注意“10100”為AT24C512固定的前5位二進制;A0、A1 用于對多個AT24C512加以區(qū)分;R/W為讀寫操作位,為1時表示讀操作,為0時表示寫操作。AT24C512內(nèi)部有512頁,每一頁為128字節(jié),任一單元的地址為